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Abstract

» current dipole of arbitrary orientation i1s imbedded in a
uniform conductor dbounded by infinite parallel insulating planes.
The potential is the sum of the potential: due to the parallel and
perpendicular componentg into which the dipole moment is resolved.
Using the method of images, the potential due to either component
is the sum of the potentials arising from two infinlite uniformly
spaced collinear arrays3 of dipoles.

Mathematicaily, the problem is to find an approximation to
the sum of a slowly converging series of positive terms. This is
done in such a way that the arithmetical work is shortened and the
relative error is always less than any desired number. Curves are
given which show how the errors of certain very simple approximations
depend on position in the f- .ld. Equipotential surfaces are shown
for the parallel component. For this case, at distances greater
than twice the thickness, the equipotential surfaces are very close
to the circular cylinders characteristic of a linear dipole of

uniform density in an u~bounded conductor.
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l. The potential of a current dipole in an infinite medium

If there 18 a single point source of current in an infinite
conduc ting medium, the current flows radially awvay from the source
aad 31te density at a distance r meters is

J= 3 ;r‘:_ amperes per square meter (1)

where S 1s the strength of the source in amperes. The electric

intensity due to tha flow is

E=J -5 _
o 47Tq r* (2)

in which g 1is the conduct’vity. The potential at a distance r

from the source 1is

V= f““ =35 {iq e (3)

Let the point at which the potential 1s to Pe calculated be
taken as the origin; and let there be a ginl of strength S at
(x, v, z) and a source of equal strength at (x + h, y, z). The

potential at the origin 1is
- S | B | '
V 4T ( " r it

r= (x"+ 9+ z")'/b » Pz i(m-k)"‘t 3"*- 2"§‘/&

-y
The function r, may be expanded in a Taylor geries as

where

L A l -
= th 2 (=) + - (5)
giving
V = 4'1'6'!‘ ( x higher povers of h ) (6)




tr:e limit of which ss h -:. 0 and ‘u _—n . -3 2UCH 2 WLy
that L(Sh) = M, is

V= s (7)

4T are?
where 8§ is the angle between the pcgitive direculon of the current
moment, M, (sink %o source),and the vector dr:vwn from dlopole to
field coint. The exprecsion (7) for the potentinl i3 apsureprlate

for the ¥KS units which we shall use.

2. Dipole axis parallel to the faccs of an infinfte conductling slab

Boundary conditions.

Let the faces of the slab be the planes 2 =0 and = "5§"

Let the axis of the dipole be in the =-3 dir<:tion and let the
dipole, of momeni. M, be on the ¥ axis at £=¢,.
We assume that thare 18 3 nonconducting medium i~ centact wlth
both faces of the .ab.
On account of symmetry ve sce that
V=¢+vnen x =0, (except at y =0 , 7z = S (8)

and because there can be no current normal tc the btoundariea

av ——
== =0 when Z =0, . {9
o ¢ 2

Let us regard the current density at any point as the vec.ou
sum of the dipole current density which would exisft in unbounded
space and tha increment to current density due to the presence «f
boundaries. The iatter 18 finitc wihile the forer increases wi:ih-
out 1imit as we anprozch the dipole. It follows that over a amill
spherical surfac? surrounding the dipole’the aotential approz2ches

that of a dipole of the same morment in unbounded epace as the




eLdtes of S sphoed Gluinleiien. CosRicor U upaee waans lang
Sounda2ry is this ~nohere 2nd whooe outer bound "r’22 are ol e
no.rellel planes anc & circular cylindere whose axig 1g the o wiic
and whose radlus is infinite. In this space, J.QVyV = O :
- )
and we know the vzlue of the normal derivative of the potentlal
over all bovndaries. The potential within is uniquely aztermined
(1)
by these conditlons

The eame conditlions are satisfied in an Infinlte conductiing

madium if there 18 an Infinite linear array of dipoles of cauzl moments,

M)whose axes are in the positive = dircction’and whose coordinates

are

3 7:03 I:na:b

{10)
where n 1c an integer which agssumes all values from =irus infinicy
to plus infinity. The potential in this case is a periodic function
of € : but its value betvreen 2= and & :%15 the 3ome as thas

for the single Aipole in the sladb.

3. The potential duc ts> an infinltc uniform linear array of dipoles.

The array /{1C) may be regarded 18 two collincar arrcys each
of which has a uniform interval of length a between 1ts elements.
One array ic displaced with respect to thz other along the 2 axis
a2 distance equal to 2b.

The potentlel due to one oi* the other of these arrays is cne
sun of terms of the form

Vo= M cou Oy

" 4Tad,

{11}

— ——————— - —

. J. H. Jeanc, "Electricity ard Mugnoticm"; §§;187, 37
Cambridge University Prosgs, 1929.
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supression "3 A3 tha lengtna of tncl JCZROr fvon tne n incle
¥l
ta the »oint pl -.v.2) Ter whien thz potentlinl i beinz calculated

and & 1s tho znzla hotuvecen the axic of the dlinole andé tiis vector,
In this cal(:;acj:1 it 1s convenlent to usc a system of enordineates
in which fhe elencnvs or one avray are at

R=gess Y=gy § af=ihes o (12)

- % direction, That being the case,
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{ \:Z{X“ﬁ-y —r(—

= ptile
and the length .0f the projection of thiz vectsr on the axis of the
ith O . - 5
n ipovle is x. Therciore,

oS8 P = — -
:) - - i a At / . (.'_4‘

& L
\*/.“ = - 'Z'ji.’/,z, {15)

v 4-T & {x*+y 4 (2-na)

and the potentlal due to the whole of one array, referred tc any

ziement of the array zg origin, 1is

\V' M x N i
el D I . .
= e 2 RN LA 3
4rT ;-\-:'__'_“OO{X" +y -.-&:?'-:m)"’jw 116)
Inspecticn of (15} shecws that
Vix,v,z') = -V{-x,y,3") (17}
Vix,v,2'} = v{i,-y,2") (18)

- . — 7 - = el N
Vix,y,2') = ¥(x,y,-2") : {19)



. I'4 ) N [ . A
pecause (-2 - i) ans the dare valuve for o = m =& {2’ ned hie foc

n = -m.

Vix,y,z') = Vv(x,y,z2"+ ma); m = any integer; {20)
i.e., the function ic perilodic in 2z’with period a.

V{x,7,2" ) = V(x,y,a-2%) (22)
which follows frorn (19) and (20), and shows that the potential ‘s
alsc symmetrical with respect to any plane z’ = lira.

The relzation between z’ and z is either

4

zZ = z=b (27a)
or

2=z + b (22b)
depending on whether we are considering the upper or lowecr of the
two uniform arrays. Tahus 17 (16) 1s written

v o= x,y,2) (23)
ve [ind the potentlal due to the dipole in the slab to be

Vl(x,y,z) = V(x,y,2-b) + V(x,y,z+b) (24)
In particuler,

vy = 2V({x,y,z) when b = 0 (25}

Thus we have a iormal soluticn of the problen:.. However, the right
hand side of (16) i1s an infinite series of pcsitive terme; a1d we
must find out how to calculate V in such a woy that the relative

error is knowvn to be within satlsfactory bournds.

oo
L, Summwation of the 3eries ZE /
Nz oo JXT4) X (N - 27) 213/

We beglin by tranaforming the sories 30 that the summation

involves only dinenslonless numters. PFrom (..6)

o ©0o
TN .S _ | — oty S / ‘
Mx o ey Tpina-g) VR T qF e frer= o (o 2 ) (e
T a® a




Writing
X . s o 4% ! . R A . 2
TBPc’—}I&"-"—P:. ‘%"‘:‘"» Pt P =p (27)
the potential becomee
v="x . §=-Mp -5 (28)
4rJQ 4TTa

where
- = i
S :=. ';2':_0. {Pz, .g_-(n-% )zjyz (29)

in which 04 P& < and 04 *g' & "é" . Evidently the seriles diverges

when both p and g vanish.
In order to investigate the questlion of convergence, we write

S in the form

ot e

...(P’-w-bt)-'}/:. fo {P& +{n- %)b}.?/z *Z if'"“'("*j—)z}z/" (30)
and observe that .

z.)(“’s) (31)

Uy = 7t Ty, <3 & v 4
{p"-ﬁ- (v~ “t) }/" \7"3-) (ﬂ' )

We see also that

=z o e L Y R
=f@’-+<‘h-§‘?*§’/’o<(h+1‘)' £ 5 () o2

Since é ‘-;.‘\1 is convergent, it follows that the series § 1is

uniformly convergent over the range oL P Looo, gc 17 PR N

D - - - z
Similarly we can show that all the series formed by termwise partial
Gifferentiation of S once'ér twice with respect to any of the vari-

ables pi. pz. g are uniformly convergent.




-T= R

Consider the continuous functions

Uln)m —I . w(n) (33)

=

ip "-f(n-%)"}’/& 2 {P¢.4- (» +z.)"} Y2

in which n 1s not restricted to integral values but may be any real
number equal to or greatser than unity. When n is an integer,

u(n), and é(q) assume the same values as the constants | vn.

Both u(n) and v(n) are monotonic function= of n which approach 2eroc

as n becomes infinite. Therefore,

mel
u,, >'£.“(h) dn DU,
me

[V S >f u(n)dn P Upey
My

. K
Wy >f w(n)dn >u,

Adding these mequautiea.

£ fumin 5 E g,

me) - (34)
As R—oo. , the series and the integral both converge, and

Subtracting each term of the adbove inoqualities from g u, we get

um>§u" "ja(”) d.h >° (36)
m

P

-
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m-/
1r ?. «,, be added anc subtracted from the middle term, we

see that (36) 1s equivalent to
o > 3 Uy -{ﬁ" u.+[o’u<n>dnj>o

' ' m (37)
The geometrical interpretation of (36) is seen in PFig. 1 in which
the areas of the rcctangles (of unit width) are Ul g0 etc. The
middle term of the inequality is evidently the sum ¢f the areas of
<1l the three-sidcl figures which lie abov2 the continuous curve.
These figures may all be 81id to the left, as shown, into the
rectangle whose height 18 u, and for each portion of the left-hand
rectangle so occupied there corresponds an unoccuplied three-sided
space to the left of it. Evidently, 1f D, U(n) >0;(me newp the
u{n) curve is concave upward; and each occupied space in the mth
rectangle is greater than the corresponding unoccupied space.
Accordingly 1if

DSuln) >0, men L,

we have
me-{

[+ o0
U > .75_ Un*{Z'. u..-i-fu(n)dh} >t un.
(22}

or

O m= o
+ jJu e U pn
"'z‘“‘">,5“"'{§“" Jutrdne it} >0 (38)

when tha second derivative 1s positive over the range ¢f integration.

Thus (37) shows that in general the relative error in using

’gu” +f u(n)du

!

in place of the sum 38 less than the right hand term of the inequality




-9.
o , ey -
v S, S E ur s}, )
B st o =T = 39)
> o, %u“ ’S_u.,, +£u(h)‘<{.

whereas if the aozve condition or. the gecord derivative iz car’piad

\38) shows that tle relative errcr in using
ce

m— -
U= S u""'_J wuin) Jy +los U
o Z

{4C)
e
irstead of the sumr 18 less than the righi hand side of
Sy, -U +
u — _1_ Uru L(M
04 ié__:____. < 2 < 1413

4?_‘4'1 EQ" U

/

The generality and usefulness of (39) and (41) as well a3 che
elementary character of the derivavion would cause onc to expect
that these facts vould be well Krown and readily cvailedle in the
literature of infinite series. I have not oveen abie to find thom.

It will be 3een that if the derivative terms and tne remaider
are omitted from the formule of Fuler and Maclaur!iy the result =
the same as (40). Por the presert circumestances the zpprooria .e

form of the Eulier-maclaurir formula i3

oo Ly K1 B r are D
Su, =2U-3 _ar ; ’Dn u(n.} R o
[} Pr=y (""). L P mZ
where the remainder may bte written
.S' 3 (h)~ é (o‘] D"K (W) an
RK-J . {f_’." ‘K )_.. n Ut TE
n (ke )!

in whick B and B are Bernoulli numbers and perjodic Bernoulli




[ Junctiong raspesiivel;

In (42) = aufficiert ¢onditlon for ctlw firct Cowvm ny on

!
i
|
!
[

(D

-

e

[
9]

|

.
U
i

: ulf){
1

<
) Nn=m
to exceccd the renainder. Fk-l' nd to hove .he czne gign ¢ R,

400
R E BN = ,
.8 that ":n i) Dn un)o ;(MEinsLo)

2k
while Dn u{n) does not chkange sign througtout the interval

, 2 - .
MLn « o ( " Thus, for exarple, the error in (H#C) is less than

( the first derivative term

z + ’
provided D, ulyj- B4 0n) > 05 (v >

2 - kel
and Dnu(n) is of uniform cign for all n = m. inllorly, L© oly
the first derivative term is retained in {(42), the ¢ _or Is le:us

than the next teim, _ ]
\n-»B_a__ D fun)!

41

Lhzra

7z

9]
provided thzt fc1 all n > mn, Dnu(n) ana Dn u{r.) hzve the cam: ¢i2n

-

and the sign doet nct change.
. 7k . : .

If 1t is oniy known that D u(n) dceu not chasge Ltc zigy. tne

error 18 numericelily less than

2
tern, ané has the same sign( ).

fwice the 'irst neglected deriilve

The terms of the series (2¢) diminisi: with inzreasin; n it
rapidly if p 18 small. Wwhen p is liarge, each dlpole contribu ..o less

potential and the contributions of the dipoles are more noarl:” 2auval,

2. J. P. Stefferser, Interpolation, p. 133
The Willliams & VWilkine Co., Baltimore, 1G27.

--_----_-!-.-----------"'-'-----------------.-.--..



Furtherinors, oir. The wiislanten 6o "the ¢inagl ve ol 5, lisiis
: 2 2
iy ¢ Y . . S PO e 18 o [T o RS S
as we vary « . while Kecp.ing X -y ccpstant, e oshinvld 2nect

that, vith lerge “nlues of p, the potential sould beinczely Indeés

pendent of =z . T’tu@ considerations tempt onc to wis th2 Juiggral

a4

from minus infirit, Lo infinity in-»nlace ¢ the gun end uvo zeck a

ilmit to the erroir ccemmitted. TFrrom the ph¢sigal phandpolnt,. vsling

the integral for ihe sum ie equivalent to replaging the array of

points with a-continuous dipole linre of strength i per unit length

aleng the z gxis.. The equipotentlal aurfaces of :uch o dlstribvution
are well knéwn to be circular cylinders which all pass tarough the
sourgerline end whose axes pass through the x axis poinlliel to -the
z axis.

Beasbniné as wevdid.before to establish {34), and n;w allowing
u to represent thcggeneral term without rectiiction on the sign and

value of n, we hae e

(2] =% -
L < \
]u (n)'dn S é__ L{n =2 91 o, ; (U Z- QI _’4._r A
: 5 - 0 ' =

Subtracting

o~
-

s e o ] X !..\’,'
ju(n) dn -2 U, = U, 6 ; =6 -9, ;5 {924

- O

The relative erro: in using the integral for the sum g traorefore
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Szmce g £ 4D, a2nd oy nese o ogn Bl : B
.

unicy, the relefiive evioy s noppvodin ,'.;«Q-~ LI RO L o

In obrtatring tnigs limit, ro acceunt hig veen tazea of coy
properties of tho seriles execpti LUC monctonye .oonelir. W6 nlonht

be supnosed thiz€ onny ¢ould ciatablish alocovl o L Linil dor
the error of the Znfinite 1Integral by tillling ccooox 7w Bhape
of the curve. Thcre are di“ficultics, hereverr, <ii-™ - ll2 1L more
convenient to determiine the sBraller crror iimic v czo..aring the
infinite integral with the results of & calculztisn tjhich user [40)
or (42). ¥e =y~ thus ablz to find the omallect wvuoiue of p for which
the integral will give ony desirec :ccurxcy. Stice we have
o
[ w(o) dn = _A_
2.
_/ fake ._“*6)

- 04 )
the poteatial is ginviy

G
o2

AT (xF+y ™) (47)

\j A~

Zven for wvaluer of » az sincll 38 urity ore 2rror An {7 20

q =0, 1/2 4f only atont 1 per cen'.. khlie (47) can glvc no

irformatior alou’l the variation of V witn q, 1t zreactly shoritens the

work of plotiing cquipotcncials anc flow lines n the plyre 27 = 0,
Beliow cceetaile vrlucs of p and ¢, wiricihh Cdapond on “he reouired

sccuracy, it is pcssible tn une as tne equaticnz of the =2qulpoten-

tial aurfaccs

{OL::. A cos 6 s (p Y=ty T T coe e Tt
tTaV ‘
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for which the streamlincs are
= Asin“ 6
(43)
Thie means that ve ignore 211 the dipoles except the near=28t one.
The values of p and q below which (48) 18 good ensugh are found
by comparison of (48) with the results obtained by using (30)
together with (40).

In the foregoing discussion the symbols u(n), v(n) and u,,
vy, have been used to distinguish between the two forms which thae
general series term assumes when n is kept positive. Evidently
all that has been said about u(n) and u, from (34) to (43) inclu-

sive applies as well to v(n) and v,

5. Collected explicit formulas for calculating the potential

(A) \ M(-%—)x s {1;7)
g (xty ) '

This formula does not contain z'. It is most accurate when the

distance from the dipole is large (Fig. 2).

i x
(B) V= 4T T (xt+y Ly %) e (48)

Formula (B) is most accurate when the distance from the dipole is

small compared with tne thickness of the Blab (Fig. 3).

/ < ! ! |- M4 »
(c) V= Wc‘q [g‘o {P‘+(n-3)‘}% M P"[ Zm}"] f?,fii

=

+ T
z—{pt_’_ (M_}) }yg + é {Pz+ (“,*_1’)1.5%,

[._ mt &

]
{o &+ (™ W)’“} a

|
T e * R‘}




bl

vVarious limics for the remainder in (C).

(1) ©4 K. L-‘LL_J:'E; "'-f-(m-?_)‘ﬁt. + {F:’"‘ (m_,;‘)&}%]’.(m'z‘z%)

(11) OI‘R'L’L"L_"L Ty 7

{;L-f-(m“}) }"' f—’-—}-(ww-z.) /%n
= .4 — O Y
(111) 0 &R, & —— m% +§W) _f/;_] t

Tnis formula anéd the Euler-Maclavrin formmula (D) which follows
are always applicable.

=

| - ( - M- T
R ([gzg,,wn-p’-}’/b " L m}d

: ' - mie T
ot T B T T g
!

-+ { < ! m'ig . mt+q - .,L-RI
L{F&“'(‘”“"(b’)z_&'&_y n [567’.+(M_b>z}-/b+zpt+%m.f%)i!§;-\ :-'.

Tre remainder in /D) satisfies the inequality

-2, 4(""1—)-‘7@ ( 4(M+p) 361 .,L?/-L
¢ 4—8 [ -t f"-f-(m z,)‘}’/’-+ M+1' (é,+(w4 J?u.}

provided (m-q) > 1.202p.

6. The Electric Field

The series which result from termwise Adifferentiation of the




e
S aeries with resject to pl, p2, and u erc unifornmly conaveent .
The order of differentiation and surmation may, thercfore, ve

1nverted, and we have

_ . I <
3 _ 2 L unz $ a3 T il JRET
P %P oo e 0P moe
_3._:.-3,%2 t, (51)
3 pr it |
|
as_ -3 2 (-, (52) ‘

6 Nns - oo
°F

Using (28), the clectric intensities are therefore

- 9y - 2 -
Ex= - .Q.Y_.__g;;__. 4o’ ‘3P' S) ATTS bﬁlgtns(%)

S % 2P
o.M 3
Ey= e 3PP L0 ST
M5k S ‘
£, = ~mreas 3P 2 () tn (55)

In the region in which the approximation formula (47} 1is

accurate enough, the electric intenalties becomne

F= L_'g_—l—- Cs_lf'_n—f—- E ~(”“) cos ¢‘_ (56)

2wq r* 2Tmar? LT
)‘— .1.
L) fsrgsne) Ty - E5 57
X 27T r v a’ P




aae

-16-
. ™
c -3.(__:_.5'-‘,{_-_,. SN .?.<f* - _‘:‘_,, _{ZE‘}_ . B oEe vy
! 2mgr® naa¥ o¥ e -

Formulas {5%)-(58) are applicablec when p .2 larse eaough. In theo2
L -ly .2 :
threes equzaticns ? l8 tan X ana rr is » + Yy
Near cncugh to the origin one ray use tne appreximation ziven

‘'n {48) and obtain

sO i v,
S m—c—c-’——--. ; (/’zf x Sk y *i-") i5¢)
2Tap- e
~ Msin?d
EQ 4;$P3' 160

In (59) and (60) the angle & is not the conventionzl polur
dZatance of spnherical polar coordinates. It 1eg measured between the
* dlrection and the directicon of the ficld peint.

Betweer: the near and fu:- reglionc, the above approximations ere
not good enough ind the flelds must be computed in some other way
guch as 18 shown in {53), (54) and 55). The s8eries ‘%i‘t”
and é("“})tn converge nmore rapidly than the serles .-z‘g;‘ the
potentizl; and metkrod2 lixe thosc used for the notential may be uscd

for calculating the gune with 2ny <esired accuracy.

7. Dipole uX!: normal to the races

Let =0 Gluole mement, i, br 3n the z direction. Usirny tre
metnod of imagcs, we fird rthe potentiail +ithin the glabd to be tho
game 25 that due to two oppositely directed Infinite ccocillneur
APrSOYs WN03c elementg are au

' - .
20, y =0, z =ana, (35 2-0)




ooy, rthote mopnenvl Gie L ona

The potential due o ciie ivss ey, whe

positive z direction, 1is

\/ N = Z' na
(+) 4TT ,;'/;_o.{x"-&yl'-r (2'-na)t* ¥z
o ’ , {61)
4T Ta* z {sz‘ (n,11)1}3/ 2 r a>
- oo 5

and that due to the other array, the monente of whcse eleniente are

in the negative z direction, 1is

(n-g" i_ g
Z Pn" %()n—’p")zj 3/2 3([5’ = f\) (62)
U

V

- = 41r<r

Hence the total potential of the dipole :is8
vy _ ,.’)‘
Vo= Ve (e e pog (63)
Evidently V1 vanishes everywhere i1f b = ¢, a/2. We may write :ihc

sun in (61}, (62) as fellows:

r)*%; 34 = 5?”‘ 3 = <

{*+ g -»EP’"*("'%)L}“& ’ (68!
Oo ©o

— N )

= 2 -7 —F =35

ZPL—*(n-Z'.)L}J/L =y {P *_(H_*}\ZZQ

9M9

wnere S 1s the sum which appears in the potential of the narallel

comporent,

8. Numerical data

Pig. 2 shows how the relative error of fommula A depernds on

«

p and q. Tha ordinate 18, of coursc, rot the actuzl relavive ereoy

=
e e i e e



because thig runber s un2ttaincble. ‘iae number plottad azairns
p, with q 28 parameter, is 102(Vv,- \k) /Vc in which an upper limit
of the error »f Vg. 4s found from (C,111), 1s keot less than 109
of VC - VA . Thus the 8ign of the plotted ordinate ig always
the same as that of the actual relative eprror. The magnltude 1s
greater than thet of the relative error when VC - VA.¢ 0. When
Vc -V > 0, it 1is possible that the ordinatcs ol (he onrves may
be a little less thar the relative error. The subscripts of Vv
used here refer to the working formulae (A) to (D).

In Pig. 3 we show & similar meueure of the relative error in
using formula B which is plotted against p for varicuc values of q.
The ordinate 1is IOO(Vb - VB)/VC. In this case the error limit of
VC’ calculated by means of {C,1) is alwayus less than 1% of

Ve - VB

It is unnecessary to exhibit equipotential curves or tne
parallel conponent for p greater than atout 1.0 or 1.5 because
¥1g. 2 shows that the equipotential surfaces, pls = k (a ~constant),
are very accurately represented by circular cylinders whose axes,
parallel to the z axis, pass through the point, (1/k, 0), and whose
radius is 1l/k.

The nature of the equipctential surfaces of the parallel cois-
ponent in the region 0 £ p £ 1, in part of which computation by
formula C 1.0 necegsary, 18 shown by means of their curves of
intersection with the planes q = 0, 1/4, 1/2 in Pigs. 4, 5, 6.
Near the origin the data of Fig. 3 enable us to use the simple

formula B. The parameters attached to the individual curves are

the values of the dimensionless number pls (cee equation 28) fron




Bhndch the Solehbin: seay e UF Vndc 2y amloanlviie o ol
The Snta or Tigs. M, &% 1pa & 21¢ not 1n ereor Dy w0re Snan
Ler cont.  No equipoiential garflacer have becn niotted ror
perpendicular conpernent.,

I am 1indebted to tirs. Loieg Edelsteln for doiing uall the

numericel werle and for verifyving pari of the analycle.
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1.0

Fig.

y Intersectionsd of equinotential surfaces with the
plane q = 0. Horizcntal 4ipole.




’2

- e

Fig. 5

Intersections of equipotential surfaces with the
plane q = 1/4. Horizontal dipole.

'\

[N
(7]




Fig. 6

Intersections of equipotential surfaces
plane q = 1/2.

Horizontal dipole.
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